(2x2+x-4)=(-3x^2-5x+1)

Simple and best practice solution for (2x2+x-4)=(-3x^2-5x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x2+x-4)=(-3x^2-5x+1) equation:



(2x^2+x-4)=(-3x^2-5x+1)
We move all terms to the left:
(2x^2+x-4)-((-3x^2-5x+1))=0
We get rid of parentheses
-((-3x^2-5x+1))+2x^2+x-4=0
We calculate terms in parentheses: -((-3x^2-5x+1)), so:
(-3x^2-5x+1)
We get rid of parentheses
-3x^2-5x+1
Back to the equation:
-(-3x^2-5x+1)
We add all the numbers together, and all the variables
2x^2-(-3x^2-5x+1)+x-4=0
We get rid of parentheses
2x^2+3x^2+5x+x-1-4=0
We add all the numbers together, and all the variables
5x^2+6x-5=0
a = 5; b = 6; c = -5;
Δ = b2-4ac
Δ = 62-4·5·(-5)
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{34}}{2*5}=\frac{-6-2\sqrt{34}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{34}}{2*5}=\frac{-6+2\sqrt{34}}{10} $

See similar equations:

| 0.95p=20 | | 30y-45y+60=15y | | 30y-45y+4=15y | | 2(b=8) | | 17=5+29t-16^2 | | m=-4-(-4)/10-7 | | (1/27)^-2a=243 | | 8^2+6x-5=0 | | b/11-4=-3 | | 2x+4=3x+1+90 | | b/11-4=-4 | | 8(u-3)-6u=-38 | | 2*22/7*r=176 | | 1/32x=5x-6 | | 15(8c-4)=4c-4 | | 9a=32 | | 3^-2x=3^-3x | | 15+x=2(x=3) | | 12w-5w)*4-3+2+20=0 | | 15=x=2(x+3) | | x+2=6x+2=6x+2=6x=7+3-7= | | ×+y-4=0 | | 222x+1=9 | | 4((3w+5)/(4)+2)-3=5w | | 9x1+1=7x+5 | | 19+3x=180 | | 9x1+1=7+5 | | 19+4x=180 | | 96-0.06x=0 | | 5x^2=2645 | | 2|x+|=8 | | 3((q)^2)-80q+170=0 |

Equations solver categories